

SPX acquires one of the highest grade historic open pit gold mines in WA

Spectrum Metals Limited ("SPX" or "the Company) is pleased to announce the acquisition (100%) of the Penny West Gold Project, near Youanmi in Western Australia. This acquisition follows the First Hit Gold Mine acquisition and cements SPX's high-grade, brown fields gold strategy, focused in Western Australia.

Key Points

- SPX acquires 100% of the Penny West Gold Project from vendors Patina Resources Pty Ltd and Plateaux Resources Pty Ltd.
- Penny West was an historic (1991-1992 and 2014) high-grade open pit producer, located
 30km south of the Youanmi Gold Mine in Western Australia.
- Penny West was one of the highest-grade open pit gold mines in Western Australia, with reported high-grade production between 1991 and 1992 of **121,000 tonnes at 21.8g/t for 85,000 ounces** to 82m depth (Holden & Hyland, 2004).
- ➢ Gold was free milling with metallurgical recoveries of around 95%.
- Existing Penny West JORC 2012 indicated and inferred resource estimate of 230,000 tonnes at 5 g/t for 36,000 ounces, below the current open pit.
- Hole 16PPP001, drilled in 2016, intersected 16m at 19.9 g/t gold located 40m below the base of the open pit and represents a potential mining target.
- Drill intersections from a 2017 drilling program below the pit included 1.5m at 100.5g/t gold and 66.4g/t silver (from 129m) and 1.5m at 14.9g/t gold and 42 g/t silver (from 69.7m).

Paul Adams, Managing Director of Spectrum Metals Limited commented: "We are very pleased to announce our acquisition of the high-grade Penny West Project, which in our view, cements SPX's new strategic direction. The acquisition of Penny West follows our acquisition of the First Hit Gold Mine, near Menzies, and means we can employ our expertise to both these complimentary assets".

The Penny West Mine Location

Figure 1 below shows the Penny West project consisting of two contiguous mining leases, M57/180 and M57/196 for a total 878.2 Ha in area, in context to the nearby Youanmi Gold Project, currently owned by Vital Metals Ltd. Both tenements have been renewed and expire on 10 September 2032 and 8 May 2033 respectively and have a combined expenditure commitment of \$93,600 per year.

Figure 1. Penny West Location Plan (after Morrow & Dix 2008 & Chisholm, 2018)

Previous Mining

The Youanmi area has produced an estimated 560,000 oz of gold since discovery in 1901. Gold mining has very much centred on the Youanmi gold mine that operated from 1901 continuously into the nineteen sixties. From the early 1980s the mine operated intermittently for about twenty years and is presently under care and maintenance (Chisholm, 2018).

In 1989-1990, Metana / Eastmet discovered gold at Penny West through a geochemical sampling survey. The deposit did not outcrop and there were no old workings at surface. Excluding grade control holes, a total of 1,275 holes have been drilled on the tenements for 38,748m to a maximum depth of 329m. The average hole depth (excluding grade control) is 45m including 48 diamond drill holes that average just 159m in depth.

Eastmet/Metana mined the deposit over an 18-month period between 1991 and June 1992. Holden & Hyland (2004) reported that production from the 82 m deep Penny-West pit amounted to 121,000t at a grade of 21.8 g/t, for a total of 85,000 oz of gold, representing a gold endowment of over 1,000 ounces per vertical metre. An additional 33,240t grading 3.98 g/t gold was also treated from lower grade stockpiles for 4,000 oz and a tribute miner produced a further 2,500 ounces as lately as 2014 from the northern part of the pit.

Current Resource estimate below the open pit

The current mineral resource estimate (Chisholm, 2018) contains the following quantity of gold.

Category	Tonnes	Gold (g/t)	Contained gold (oz)
Indicated within wireframe	181,000	4.8	28,000
Inferred within wireframe	9,000	3	900
Inferred below wireframe	43,000	5	7,000
Total Inferred	52,000	4	8,000
Total	230,000	4.8	36,000

Table 1. Penny West Resource summary (rounded) at a 1 g/t lower cut

Note: Totals and averages may not agree due to rounding.

Mineral Resource Estimate – Summary of material information

Penny West Geology and Mineralisation

Penny West is located in the southern extents of the Youanmi greenstone belt with the Youanmi Fault Zone (YFZ), a cratonic scale deep crustal fault system, linking Penny West to the Youanmi Gold Mine 30km to the north. The Penny West Shear (PWSZ) represents the western-most YFZ shear.

The host of the Penny West mineralisation is a sequence of steeply dipping mafic and ultramafic rocks with minor felsic and granitoid intrusives (after Hudson, 2016). The major rock type at Penny West is a foliated to strongly foliated, fine grain, mafic chlorite-biotite schist.

Gold mineralisation is located within a persistent, steeply east-dipping (65° to 80°) quartz-sulphide lode with a strike of 250m with nuggety gold values ranging up to hundreds of grams per tonne within a dominantly felsic core. Multiple, high grade shoots, striking 335°, appear to plunge moderately to the south within the plane of the lode.

Gold is associated with pyrite-galena-sphalerite-chalcopyrite-pyrrhotite-sulphide mineralisation in quartz veins. Haselby (1993) refers to work by Mason & Till (1991) on polished section microscopy that shows that gold is associated with chalcopyrite within fractures in sphalerite.

Geological Interpretation

The structural model proposed for the Penny West deposit by Yates & Baxter (1991) involves a lode that has kinks both along strike and down dip that form sites of enriched gold mineralisation. In order to derive meaningful variography, the deposit was examined in five blocks, each of around 60 m in length with the grade control drilling results excluded.

The blocks were rotated in 3D and the digitised lode outlines used to bring the block into the line of strike and dip of the mineralisation. The blocks were then rotated until the high-grade assay intervals (>25 g/t Au) on the adjacent sections became aligned. The zones of high-grade assays were digitised on sections and combined to form discrete high-grade shoots.

Semi-variograms were generated for the to see if there were differences due to the small change in strike between the two areas. The southern block appears to have the steeper plunge (300) compared to the northern block where the plunge is interpreted to be shallower at 200.

Drilling techniques

A variety of drilling types are contained within the database with the majority being RC if the grade control holes are included (Table 2). The vast majority of the holes were drilled by the Eastmet and GMA associated companies.

Down-hole surveys were recorded for most holes and are contained in a separated survey file in the drilling database.

Drilling type	No. of holes	Total metres	Maximum depth (m)
Aircore	99	3,733	42
Diamond	48	7643	329
RAB	820	30,018	66
RC - exploration	273	15,548	200
RC – grade control	1,621	18,442	24
Vacuum	34	248	20
Total	2,896	57,190 (ex	cl. grade control holes)

Table 2. Summary of drill types at Penny West

Sampling and sub-sampling techniques

RC samples were sub-sampled (reduced in size) to approximately 3 kg by a rig-mounted static cone splitter for every metre drilled. (from Goldcrest and Ravensgate, 2004).

Composite samples were collected using a spear through spoil piles. Pre-numbered calico bags were used to reduce the likelihood of transcription errors.

All RC drill cuttings are collected at 1 metre intervals via a cyclone, then passed through a 75:25 riffle splitter and finally placed into large plastic bags or placed directly on the ground.

Goldcrest inserted standards and blanks for check analyses at a ratio of 1: 30 assay samples, showing satisfactory results.

Diamond core was logged and split usually on 1m increments or when the geology provided control. A sampling audit was conducted by independent groups in 2004. Repeats, duplicates and standards were applied according to industry best practise for most of the drilling programs prior to 2016. For the later drill programs, sample intervals were taken based on geology and sulphide mineralisation.

Figure 2. Drilling in the Penny West Pit, 2017

Source: Bromley

Sample analysis method

Industry standard drilling with 1 m samples collected from RC drilling and sample intervals from diamond drilling determined by lithological units but generally 1 m. Standard 50 g sample for assay by fire assay method with an AAS finish. This was determined to be the best method after statistical analysis of screen fire assay vs fire assay methods.

Estimation methodology

Only RC and Diamond drilling was used for the interpolation of grade within the estimate. Semi-variogram maps were generated for the strike and the dip of the lode. These did not provide any insight into subtle structures and only confirmed a strike orientation of 350° and a dip of the lode of around 65°. These orientations were confirmed by direct measurement from plan and section plots of the mineralisation.

Semi-variography of the assay data from within the wireframe indicated a range of 50 m both along strike and down dip. The across-strike distance was too short to get any meaningful range data. Wireframes constructed of the mineralisation at the 0.5 g/t Au and 5.0 g/t Au levels. Drill intervals were composited to 1m intervals and assays assigned to the 0.5g/t wireframe. An ore block model was created within this wireframe.

Block sizes were 4m x4m x1m in the X, Y, Z direction. And search directions applied at 50m x 50m x 5m in the X, Y, Z directions respectively. Search directions were orientated 350° strike, 65° dip to the east and a

plunge of 50° south. A second run 80m x 80m by 5m was also completed with identical search orientations.

Blocks were assigned within the 0.5 g/t wireframe located below the pit wireframe and tonnes and grade reported for a range of cut-off grades. The block model was then validated visually against the drill hole data.

Classification criteria

There are no Measured Resources. Indicated Mineral Resources are those resources constrained within the 0.5 g/t Au wireframe using a 50 m x 50 m x 5 m search ellipse. Each block must contain at least two points within two sectors. Inferred Mineral Resources are those identified using a 80 m x 80 m x 5 m search ellipse. Only a very small quantity of resources were placed in this category.

The holes in the resource block model above represent areas that require further drilling, particularly around the high-grade area 40m below the pit floor, or fall outside the current 0.5 g/t lower cut. Additional Inferred Mineral Resources were identified as the mineralisation located below the 0.5 g/t Au wireframe but above the 250 RL.

Figure 3. Longitudinal section through the resource block model and resource categorisation

Cut-off grade and its basis

A gold upper cut-off grade of 170 g/t was used in the resource estimation with a 1 g/t block cut-off. Although this may seem high compared to other gold deposits, the cut-off is supported from the extensive open pit grade control data and the reconciliation of grade through the mill.

Density and metallurgy

A global density of 2.8 g/cm³ was applied to the resource below the open pit. Metallurgical recoveries were not estimated for the resource however reconciliation data of the Penny West ore mined in the open pit suggests recoveries of 94-95% for gold.

Potential for additional resources

- There is potential to extend the mineralised envelope and high-grade shoots below the currently known mineralisation.
- Potential to extend known mineralisation from an incompletely mined zone (McVeigh Zone) at the northern end of the open pit mined in 2014.
- Close spaced drilling around hole 16PPP001, the 2016 hole that intersected 16m at 19.9 g/t gold 40m below the bottom of the open pit is warranted.
- Previous exploration on the tenements has identified a number of other prospects and targets that require follow up, for instance at Magenta and Columbia.
- There is potential that an IP survey over the shear zone may be useful in detecting sulphides similar to those seen in the Penny West high-grade lodes.

Terms of the Acquisition

Spectrum and wholly owned subsidiary Zebra Minerals Pty Ltd have executed a Tenement Purchase Agreement to acquire a 100% interest of two (2) Mining Leases covering the Penny West Project (refer Figure 1). The terms of the acquisition are as follows:

- 1. A total consideration of \$1.0m being
 - a) A non-refundable deposit of \$50,000 in cash (paid) at date of the agreement, and
 - b) 172,727,272 shares in Spectrum Metals Limited at a deemed issue price of \$0.0055 per Share (146,818,182 shares will be escrowed for 12 months from the date of settlement).
- 2. A Due Diligence period of 21 days commencing immediately after the date of the agreement. During or at the conclusion of the Due diligence Period, the purchaser may give notice to the vendors that it does not intend to proceed with the acquisition of the assets.
- 3. Settlement of the Acquisition is subject to and conditional upon shareholders of Spectrum Metals Limited passing a resolution at a general meeting of shareholders to issue the Consideration Shares by the End date, being on or before the 30 November 2018.

- 4. From settlement the purchaser grants the vendors a 0.5% Net Smelter Royalty on all gold recovered from the tenements on the following terms:
 - a) The Royalty is not payable on the first 7,500 ounces of gold recovered from the tenements by the purchaser; and
 - b) The purchaser may extinguish the royalty at any time by making a cash payment of \$750,000 to the vendors, at its sole discretion.

The issue of consideration shares will be subject to shareholder approval to be sought at the Company's Annual General Meeting. The Company continues to evaluate a number of suitable projects that align with its Western Australian focused high-grade gold strategy.

ENDS

For further information please contact: Mr Paul Adams Managing Director Telephone: +61 8 6369 1195 Email: info@spectrummetals.com.au

About Spectrum Metals Ltd

Spectrum Metals Limited (ASX: SPX) is a domestic West Australian focused gold exploration and development company. Concentrating on high-grade, brown fields assets, that can leverage off existing infrastructure and add value through exploration and development. Spectrum will continue to identify and explore under explored terrain and brown fields assets through the use of modern techniques and technology to maximise success.

Competent Person Statement

The information in this announcement as it relates to exploration results and/or geology was compiled by Mr Alex Hewlett, who is a Member of the Australasian Institute of Mining and Metallurgy ('AusIMM') and a consultant to the Company. Mr. Hewlett has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' ('JORC Code 2012'). Mr. Hewlett consents to the inclusion in the announcement of the matters based on the information in the form and context in which it appears.

The Information in this report that relates to Mineral Resources is based on information compiled by Dr John Chisholm, a Competent Person who is a Fellow of the Australasian Institute of Mining and Metallurgy. Dr Chisholm is Principal Geologist at Continental Resource Management Pty Ltd. Dr Chisholm has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Dr Chisholm consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Forward Looking Statements

Statements regarding Spectrum's plans with respect to its mineral properties and programmes are forward-looking statements. There can be no assurance that Spectrum's plans for development of its mineral properties will proceed as currently expected. There can also be no assurance that Spectrum will be able to confirm the presence of additional mineral resources/reserves, that any mineralisation will prove to be economic or that a mine will successfully be developed on any of Spectrum's mineral properties. The performance of Spectrum may be influenced by a number of factors which are outside the control of the Company and its Directors, staff and contractors.

Appendix 1 - Table 1 Checklist of Assessment and Reporting Criteria

Table 1 – Checklist of Assessment and Reporting Criteria

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling	• Nature and quality of sampling (eg cut	Sampling.
techniques	channels, random chips, or specific	Extensive drilling including RC and diamond.
	specialised industry standard measurement	Total of 2,896 holes of which 1621 are grade control.
	tools appropriate to the minerals under	Total of 57,190 m of drilling of which 15,548 m is RC
	investigation, such as down hole gamma	exploration and 7643 m is diamond
	sondes, or handheld XRF instruments, etc).	
	These examples should not be taken as	
	limiting the broad meaning of sampling.	
	Include reference to measures taken to	Good reconciliation of grade control drilling with
	ensure sample representivity and the	recovered gold.
	appropriate calibration of any	Good reconciliation between different types of drilling
	measurement tools or systems used.	
	• Aspects of the determination of	Lateral continuity of the mineralisation identified by
	mineralisation that are Material to the	extensive RC and diamond drilling.
	Public Report.	 Industry standard drilling with 1 m samples collected
	• In cases where 'industry standard' work	from RC drilling and sample intervals from diamond
	has been done this would be relatively	drilling determined by lithological units but generally 1
	simple (eg 'reverse circulation drilling was	m. Standard 50 g sample for assay by fire assay method.
	used to obtain 1 m samples from which 3	

Registered Office: Suite 1/827 Beaufort Street Mt Lawley WA 6052 | **T: 08 6369 1195** ABN: 94 115 770 226 | **info@spectrummetals.com.au** | **www.spectrummetals.com.au**

Criteria	JORC Code explanation	Commentary
	kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 RC drilling Diamond core. No indication that any of the holes were oriented in the digital database but technical reports refer to structural work on diamond core which indicated that at least some of the holes were oriented.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Core recovery recorded for every hole. Individual pieces of core labelled to avoid transposition within the core tray. Diamond core sawn to ensure representation. RC bags weighed to estimate recovery quality. No significant core loss occurred within or adjacent to mineralized veins in diamond drilling. Some relationship between low recovery and high grade in RC drilling.

Criteria	JORC Code explanation	Commentary
Logging	• Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate	 All of the logging to a very high standard and would be appropriate for Measured Resource category.
	Mineral Resource estimation, mining studies and metallurgical studies.Whether logging is qualitative or	 Logging is quantitative
	 quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 The whole of hole has been logged.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise ropropriate. 	 Samples collected at 1 m intervals or as dictated by geological contacts. The core was sawn in half and half core crushed and pulverized. RC samples collected by on-board rotary cyclone. In some case composite samples collected by spear sampling. The QA/QC programme has been appropriate in terms of numbers of blanks, standards and duplicates.
	 representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling 	 As far as can be determined duplicate sampling has been conducted for all but one of the drilling programmes. Sample sizes and techniques were appropriate for homogenous distribution and for grain size

Criteria	JORC Code explanation	Commentary
	 Whether sample sizes are appropriate to the grain size of the material being sampled. 	
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. 	 Assays generally 50 g fire assay which is most appropriate.
	 For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors 	 Magnetic susceptibility determined on selected core samples.
	 applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Blanks, standards, duplicates and laboratory quality control have all been monitored and are acceptable.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. 	 There is no recorded verification of significant intersection. The number of significant intersections is high and has been obtained over multiple exploration programmes.
	 The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. 	 No twinned holes recorded. All drilling data is extremely well documented. Primary data for current exploration work is available

Criteria	JORC Code explanation	Commentary
	• Discuss any adjustment to assay data.	electronically from the laboratory reports. Very little
		early data is available in any format.
		 There has been no adjustment to the data.
Location of data	 Accuracy and quality of surveys used to 	• Drill-hole collar, locations located by survey ±5 cm. Most
points	locate drill holes (collar and down-hole	hole have down-hole surveys
	surveys), trenches, mine workings and	
	other locations used in Mineral Resource	 Some early data was located on local grids. All data has
	estimation.	now been located by survey and converted to GDA94
	• Specification of the grid system used.	Zone 50
		 Topographic control adequate with an accuracy of
	Quality and adequacy of topographic	around 1m vertical. Digital topographic data provided by
	control.	DTM from Landgate supported by DGPS survey.
Data spacing and	• Data spacing for reporting of Exploration	 No exploration results reported.
distribution	Results.	Drill intercepts for the lode below the pit are in the
	Whether the data spacing and distribution	order of 20 m apart with the largest distance 57 m.
	is sufficient to establish the degree of	
	geological and grade continuity	
	appropriate for the Mineral Resource and	 Sample compositing to 1 m has been used.
	Ore Reserve estimation procedure(s) and	
	classifications applied.	
	Whether sample compositing has been	
	applied.	
Orientation of data	• Whether the orientation of sampling	• Drill intercepts are usually orthogonal to the plane of the
in relation to	achieves unbiased sampling of possible	mineralisation.
geological structure	structures and the extent to which this is	
	known, considering the deposit type.	 There is no obvious sampling bias.

Criteria	JORC Code explanation	Commentary
	 If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material 	
Sample security	The measures taken to ensure sample security.	 Not known for the early work. For the most recent campaigns the core has been in the possession of the site geologist until despatched to the laboratory by independent freight providers.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	 Audit of the sampling has been conducted by independent groups in 2004.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement	• Type, reference name/number, location and	• Mining leases M57/180 and 196 held by Plateaux Resources Pty
and land tenure	ownership including gareements or material	Ltd and Patina Resources Ptv Ltd in a Joint venture. No known
status	issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	royalty provisions. No native title or environmental issues.
	• The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	 A title search shows clear title and that the tenements are in good standing.
Exploration done by	Acknowledgment and appraisal of exploration	• The project area has been explored and mined by previous
other parties	by other parties.	parties. The results of this work including past production is included in the report.
Geology	• Deposit type, geological setting and style of mineralisation.	• The Penny West deposit is typical structurally controlled gold- quartz veins in brittle-ductile shear zones.
Drill hole	• A summary of all information material to the	■ Table-5-2-Summary-of-drill-types-at-Penny-West¶
	understanding of the exploration results	Drilling-type¤ No. of holes¤ Total metres¤ Maximum depth
Information	understanding of the exploration results	<u>Aircore</u> ¤ 99¤ 3,733¤ 42¤
	including a tabulation of the following	Diamond¤ 48¤ 7643¤ 329¤
	information for all Material drill holes:	RAB¤ 820¤ 30,018¤ 66¤ 272× 4E E48× 200×
	a constinue and northing of the drill hale	KUrexplorations 2/39 15,5489 2009 RCgrade-control 16218 18.4428 248
	\circ easting and northing of the drill hole	Vacuumă 34ă 248ă 20ă
	collar	Total¤ 2,896¤ 57,190·(excl.;grade-control·holes)¤

Criteria	JORC Code explanation	Commentary
	 elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 Given the large number of holes involved it is not appropriate to include all of the data here. A table of all exploration RC and diamond holes is included as appendix 2.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. 	 A gold upper cut-off grade of 170 g/t was used in the resource estimation with a 1 g/t block cutoff. No aggregation was used. No metal equivalent values used.

Criteria	JORC Code explanation	Commentary
	 The assumptions used for any reporting of metal equivalent values should be clearly stated. 	
Relationship between mineralisation widths	• These relationships are particularly important in the reporting of Exploration Results.	Down hole widths have been used.
and intercept lengths	• If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	• The lode dips to the east at 65° and drilling has been oriented to intersect at approximately 90°.
	 If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	Not appropriate
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Maps and sections are contained within Resource Report. Plans are available at a variety of scales.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	All data has been reported.
Other substantive exploration data	• Other exploration data, if meaningful and material, should be reported including (but not	All available information has been reported

Criteria	JORC Code explanation	Commentary
	limited to): geological observations; geophysical survey results; geochemical survey results; bulk	
	samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances	
Further work	• The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).	 Further drilling has been recommended to test down dip extensions and some infill where the drilling density is low.
	 Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Plans showing proposed drilling have been included.

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	 The database provided was checked against the primary data available to ensure the integrity and veracity of the data.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	 Dr J. Chisholm visited the area on 4 January 2018. The tenement corners were verified along with a number of drill holes.
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. 	 High confidence in interpretation of the mineralisation as a lode due to the large number of drill intersections. Drill-hole logs and assays. No assumptions made An alternate interpretation is that within the lode there are a number of high-grade shoots plunging gently to the south. This interpretation has not been supported by the recent drilling. Mineralisation restricted to the shear zones
	 The use of geology in guiding and controlling Mineral Resource estimation. 	 The shearing controls the ore thickness location and orientation of shoots and hence the ore grade

Criteria	JORC Code explanation	Commentary
	• The factors affecting continuity both of grade and geology.	
Dimensions	• The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	 The gold mineralisation has been intersected over a strike length of 282 m and to a depth of 135 m below the base of the pit. No change in gold grade with depth has been noted.
Estimation and modelling techniques	• The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and	 The estimate employed was inverse distance squares using Micromine software. An upper cut of 170 g/t was used. Samples were composited on 1 m intervals. Wireframes were used to constrain the mineralisation and data used in the search.
	 parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. 	 A previous resource estimate from 2004 gave consistent results to the current estimate. Previous mine production records provided confidence in the selection of the high upper cut used.
	The assumptions made regarding recovery of by-products.	No assumptions were made with respect to by-products.
	 Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation). 	 There are no deleterious elements present. Block modelling was 4 m x 4 m x 1 m which was used to more closely represent the width of the lode.

Criteria	JORC Code explanation	Commentary
	 In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. 	 No assumptions regarding SMUs.
	• Any assumptions behind modelling of selective	No assumptions made
	mining units.	• The geological interpretation was used to construct a series of
	 Any assumptions about correlation between variables. Description of how the geological interpretation 	 wireframes which were used to constrain the ore block model. An upper cut of 170 g/t was used based on probability plots and previous work during the mining of the Penny West pit.
	was used to control the resource estimates.	
	• Discussion of basis for using or not using grade	Resource estimated grades were compared to the grades of
	cutting or capping.	adjacent areas that had been mined.
	• The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available.	
Moisture	• Whether the tonnages are estimated on a dry	Tonnages determined on dry basis.
	basis or with natural moisture, and the method	
	of determination of the moisture content.	
Cut-off parameters	• The basis of the adopted cut-off grade(s) or	• Cut-off grade for resource report of 1.0 g/t based on the
	quality parameters applied.	previous studies. Resources were reported for a range of
		grades.

Criteria	JORC Code explanation	Commentary
Mining factors or assumptions	 Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining 	 The vein is variable in width and a minimum width of 1.5 m was assumed as a minimum mineable width. The mineralisation will most likely be mined by underground methods.
Metallurgical factors or assumptions	 The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made. 	 The metallurgical characteristics were based on the ore mined from the Penny West pit.

Criteria	JORC Code explanation	Commentary
Environmental	Assumptions made regarding possible waste	 Mining has previously taken place at the site and all waste
factors or	and process residue disposal options. It is	dumps, tailings disposal areas and mine waste water discharge
assumptions	always necessary as part of the process of	would be carried out in accordance with the mines regulations
	determining reasonable prospects for eventual	as previously.
	economic extraction to consider the potential	
	environmental impacts of the mining and	
	processing operation. While at this stage the	
	determination of potential environmental	
	impacts, particularly for a greenfields project,	
	may not always be well advanced, the status of	
	early consideration of these potential	
	environmental impacts should be reported.	
	Where these aspects have not been considered	
	this should be reported with an explanation of	
	the environmental assumptions made.	
Bulk density	• Whether assumed or determined. If assumed,	A global bulk density of 2.8 was used in line with density
	the basis for the assumptions. If determined,	determination data and previous resource reports.
	the method used, whether wet or dry, the	
	frequency of the measurements, the nature, size	
	and representativeness of the samples.	 The density was determined on sealed samples.
	• The bulk density for bulk material must have	
	been measured by methods that adequately	
	account for void spaces (vugs, porosity, etc),	
	moisture and differences between rock and	• Density data is available for oxidised, transitional and fresh
	alteration zones within the deposit.	material.

Criteria	JORC Code explanation	Commentary
	 Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	Material¤ Bulk·Density¤ Oxide¤ ~1.80·to·2.40·t/m³¤ Transitional¤ ~2.40·to·2.60·t/m³¤ Fresh¤ ~2.60·to·2.80·t/m³¤
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	 The resources were classified on the basis of the density of sampling There are no Measured Resources. Indicated Resources are those defined by sampling on a 50 x 50 m basis and projected up to 20 m from a sample point. Inferred Resources are those located between 80 to 80 m from a sample point. Additional Inferred resource are located below the Indicated resources down to a depth of 200 RL Appropriate account has been taken of relevant factors The result appropriately reflects the Competent Person's view of the deposit
Audits or reviews	• The results of any audits or reviews of Mineral Resource estimates.	 A peer review was conducted by John Doepel, Managing Director of CRM and a Competent Person.
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a 	 The CP considers that the current sample spacing is sufficient to reliably demonstrate geological and grade continuity. The quality of sampling has been performed to a good standard, and the geological logging and interpretation is robust. The sample preparation and analytical procedures, are all of a high standard.

Criteria	JORC Code explanation	Commentary
	qualitative discussion of the factors that could	• The QA/QC programme in terms of appropriate numbers of
	affect the relative accuracy and confidence of	blanks, standards and duplicates is commensurate with
	the estimate.	industry standards.
	• The statement should specify whether it relates	
	to global or local estimates, and, if local, state	
	the relevant tonnages, which should be relevant	• The resource estimate is based on global estimates within any
	to technical and economic evaluation.	specific resource block. The density of each block is based on a
	Documentation should include assumptions	global estimate.
	made and the procedures used.	
	• These statements of relative accuracy and	
	confidence of the estimate should be compared	• =
	with production data, where available.	

Appendix 2 Listing of drill holes within the Penny West Area of interest

Hole_ID	Azimuth	Hole_Type	Purpose	E-GDA94	N-GDA94	RL	Max_Depth	Tenement	Company
4PWRC0104	272	RC	EX	676704.9	6806852	492.45	188	M57/180	Goldcrest
4PWRC0105	272	RC	EX	676649.8	6807034	493.5	132	M57/180	Goldcrest
4PWRC0106	272	RC	EX	676668.2	6807013	492.66	132	M57/180	Goldcrest
4PWRC0107	272	RC	EX	676450.8	6807189	492.27	83	M57/180	Goldcrest
4PWRC0108	272	RC	EX	676481.7	6807205	491.68	83	M57/180	Goldcrest
4PWRC0109	272	RC	EX	676516.1	6807225	491.04	95	M57/180	Goldcrest
4PWRC0110	272	RC	EX	676533.8	6807234	490.67	145	M57/180	Goldcrest
4PWRC0111	272	RC	EX	676586.9	6807263	489.83	131	M57/180	Goldcrest
4PWRC0112	272	RC	EX	676664.9	6806591	493.86	100	M57/196	Goldcrest
4PWRC0113	272	RC	EX	676702.4	6806610	493.89	100	M57/196	Goldcrest
4PWRC0114	272	RC	EX	676738.1	6806628	493.59	100	M57/196	Goldcrest
4PWRC0115	272	RC	EX	676629.9	6806832	448.58	88	M57/180	Goldcrest
4PWRC0116	272	RC	EX	676630.5	6806832	448.55	108	M57/180	Goldcrest
4PWRC0117	272	RC	EX	676631.3	6806832	448.39	138	M57/180	Goldcrest
4PWRC0118	272	RC	EX	676633.3	6806850	450.7	113	M57/180	Goldcrest
4PWRC0119	272	RC	EX	676634	6806850	450.69	120	M57/180	Goldcrest
4PWRC0120	272	RC	EX	676634.3	6806850	450.61	138	M57/180	Goldcrest
4PWRC0121	272	RC	EX	676617.3	6806812	445.27	71	M57/180	Goldcrest
4PWRC0122	272	RC	EX	676618.3	6806812	445.31	78	M57/180	Goldcrest
4PWRC0123	272	RC	EX	676619.2	6806812	445.46	136	M57/180	Goldcrest
4PWRC0124	272	RC	EX	676627.2	6806797	444.52	6	M57/180	Goldcrest
4PWRC0125	272	RC	EX	676645	6806850	450.87	168	M57/180	Goldcrest
4PWRC0126	272	RC	EX	676641.4	6806869	453.51	117	M57/180	Goldcrest
4PWRC0127	272	RC	EX	676641.9	6806869	453.37	132	M57/180	Goldcrest
4PWRC0128	272	RC	EX	676642.3	6806869	453.44	150	M57/180	Goldcrest
6YMA0107	270	AC	EX	676740.7	6807201	492	26	M57/180	Goldcrest
6YMA0108	270	AC	EX	676790.7	6807201	492	42	M57/180	Goldcrest
6YMA0109	270	AC	EX	676840.7	6807201	492	36	M57/180	Goldcrest

Registered Office: Suite 1/827 Beaufort Street Mt Lawley WA 6052 | T: 08 6369 1195 ABN: 94 115 770 226 | info@spectrummetals.com.au | www.spectrummetals.com.au

6YMA0110	270	AC	EX	676890.7	6807201	492	35	M57/180	Goldcrest
6YMA0111	270	AC	EX	676940.7	6807201	492	33	M57/180	Goldcrest
6YMA0112	270	AC	EX	676990.7	6807201	492	33	M57/180	Goldcrest
6YMA0122	270	AC	EX	676519.7	6807316	495	42	M57/180	Goldcrest
6YMA0123	270	AC	EX	676529.7	6807318	495	41	M57/180	Goldcrest
6YMA0124	270	AC	EX	676485.7	6807433	492	29	M57/180	Goldcrest
6YMA0125	270	AC	EX	676491.7	6807436	492	35	M57/180	Goldcrest
94PSR0308	241.7	RAB	EX	676694.6	6806604	493	50	M57/196	GMA
94PSR0309	241.7	RAB	EX	676712.2	6806614	493	13	M57/196	GMA
94PWD016	241.7	DIA	EX	676820.7	6806761	493	329	M57/180	GMA
PWAC0001	331.7	AC	EX	676298.1	6806548	494	15	M57/196	EASTMET
PWAC0002	331.7	AC	EX	676315.5	6806558	494	40	M57/196	EASTMET
PWAC0003	331.7	AC	EX	676332.9	6806568	494	35	M57/196	EASTMET
PWAC0004	331.7	AC	EX	676350.3	6806578	494	40	M57/196	EASTMET
PWAC0005	331.7	AC	EX	676367.8	6806588	494	39	M57/196	EASTMET
PWAC0006	331.7	AC	EX	676385.2	6806597	494	40	M57/196	EASTMET
PWAC0007	331.7	AC	EX	676402.6	6806607	494	40	M57/196	EASTMET
PWAC0008	331.7	AC	EX	676420	6806617	494	40	M57/196	EASTMET
PWAC0009	331.7	AC	EX	676437.5	6806627	494	40	M57/196	EASTMET
PWAC0010	331.7	AC	EX	676454.9	6806637	494	40	M57/196	EASTMET
PWAC0011	331.7	AC	EX	676472.3	6806647	494	38	M57/196	EASTMET
PWAC0012	331.7	AC	EX	676489.7	6806656	494	40	M57/196	EASTMET
PWAC0013	331.7	AC	EX	676507.1	6806666	494	40	M57/196	EASTMET
PWAC0014	331.7	AC	EX	676524.6	6806676	494	40	M57/196	EASTMET
PWAC0015	331.7	AC	EX	676542	6806686	494	40	M57/196	EASTMET
PWAC0016	331.7	AC	EX	676559.4	6806696	494	40	M57/196	EASTMET
PWAC0017	331.7	AC	EX	676293.6	6806638	495	38	M57/196	EASTMET
PWAC0018	331.7	AC	EX	676311.1	6806647	495	40	M57/196	EASTMET
PWAC0019	331.7	AC	EX	676328.5	6806657	495	40	M57/196	EASTMET
PWAC0020	331.7	AC	EX	676345.9	6806667	495	40	M57/196	EASTMET
PWAC0021	331.7	AC	EX	676363.3	6806677	495	35	M57/196	EASTMET
PWAC0022	331.7	AC	EX	676380.8	6806687	495	31	M57/196	EASTMET

PWAC0023	331.7	AC	EX	676398.2	6806697	495	40	M57/196	EASTMET
PWAC0024	331.7	AC	EX	676415.6	6806706	495	40	M57/196	EASTMET
PWAC0025	331.7	AC	EX	676433	6806716	495	40	M57/196	EASTMET
PWAC0026	331.7	AC	EX	676450.4	6806726	495	40	M57/196	EASTMET
PWAC0027	331.7	AC	EX	676467.9	6806736	495	40	M57/196	EASTMET
PWAC0028	331.7	AC	EX	676485.3	6806746	495	35	M57/196	EASTMET
PWAC0029	331.7	AC	EX	676502.7	6806755	495	40	M57/196	EASTMET
PWAC0030	331.7	AC	EX	676520.1	6806765	495	40	M57/196	EASTMET
PWAC0031	331.7	AC	EX	676537.6	6806775	495	40	M57/196	EASTMET
PWAC0032	331.7	AC	EX	676555	6806785	494.47	40	M57/196	EASTMET
PWAC0033	331.7	AC	EX	676289.2	6806727	495	40	M57/196	EASTMET
PWAC0034	331.7	AC	EX	676306.6	6806737	495	40	M57/196	EASTMET
PWAC0035	331.7	AC	EX	676324.1	6806747	495	40	M57/196	EASTMET
PWAC0036	331.7	AC	EX	676341.5	6806756	495	40	M57/196	EASTMET
PWAC0037	331.7	AC	EX	676358.9	6806766	495	40	M57/196	EASTMET
PWAC0038	331.7	AC	EX	676376.3	6806776	495	40	M57/196	EASTMET
PWAC0039	331.7	AC	EX	676393.7	6806786	495	40	M57/196	EASTMET
PWAC0040	331.7	AC	EX	676411.2	6806796	495	40	M57/196	EASTMET
PWAC0041	331.7	AC	EX	676428.6	6806806	495	40	M57/180	EASTMET
PWAC0042	331.7	AC	EX	676446	6806815	495	40	M57/180	EASTMET
PWAC0043	331.7	AC	EX	676463.4	6806825	495	38	M57/180	EASTMET
PWAC0044	331.7	AC	EX	676480.9	6806835	495	32	M57/180	EASTMET
PWAC0045	331.7	AC	EX	676498.3	6806845	495	39	M57/180	EASTMET
PWAC0046	331.7	AC	EX	676515.7	6806855	495	39	M57/180	EASTMET
PWAC0047	331.7	AC	EX	676533.1	6806864	495.1	35	M57/180	EASTMET
PWAC0048	331.7	AC	EX	676550.5	6806874	494.9	40	M57/180	EASTMET
PWAC0050	331.7	AC	EX	676267.3	6806806	495	40	M57/180	EASTMET
PWAC0051	331.7	AC	EX	676284.8	6806816	495	39	M57/180	EASTMET
PWAC0052	331.7	AC	EX	676302.2	6806826	495	19	M57/180	EASTMET
PWAC0053	331.7	AC	EX	676319.6	6806836	495	40	M57/180	EASTMET
PWAC0054	331.7	AC	EX	676337	6806846	495	35	M57/180	EASTMET
PWAC0055	331.7	AC	EX	676354.5	6806856	495	40	M57/180	EASTMET

PWAC0056	331.7	AC	EX	676371.9	6806865	495	40	M57/180	EASTMET
PWAC0057	331.7	AC	EX	676389.3	6806875	495	40	M57/180	EASTMET
PWAC0058	331.7	AC	EX	676406.7	6806885	495	40	M57/180	EASTMET
PWAC0059	331.7	AC	EX	676424.2	6806895	495	40	M57/180	EASTMET
PWAC0060	331.7	AC	EX	676441.6	6806905	495	40	M57/180	EASTMET
PWAC0061	331.7	AC	EX	676459	6806915	495	40	M57/180	EASTMET
PWAC0062	331.7	AC	EX	676476.4	6806924	495	40	M57/180	EASTMET
PWAC0063	331.7	AC	EX	676493.8	6806934	495	39	M57/180	EASTMET
PWAC0064	331.7	AC	EX	676511.3	6806944	495.76	40	M57/180	EASTMET
PWAC0066	331.7	AC	EX	676262.9	6806896	495	40	M57/180	EASTMET
PWAC0067	331.7	AC	EX	676280.3	6806906	495	40	M57/180	EASTMET
PWAC0068	331.7	AC	EX	676297.8	6806915	495	40	M57/180	EASTMET
PWAC0069	331.7	AC	EX	676315.2	6806925	495	40	M57/180	EASTMET
PWAC0070	331.7	AC	EX	676332.6	6806935	495	40	M57/180	EASTMET
PWAC0071	331.7	AC	EX	676350	6806945	495	40	M57/180	EASTMET
PWAC0072	331.7	AC	EX	676367.4	6806955	495	40	M57/180	EASTMET
PWAC0073	331.7	AC	EX	676384.9	6806965	495	40	M57/180	EASTMET
PWAC0074	331.7	AC	EX	676402.3	6806974	495	34	M57/180	EASTMET
PWAC0075	331.7	AC	EX	676419.7	6806984	495	40	M57/180	EASTMET
PWAC0076	331.7	AC	EX	676437.1	6806994	495	40	M57/180	EASTMET
PWAC0077	331.7	AC	EX	676454.6	6807004	495	40	M57/180	EASTMET
PWAC0078	331.7	AC	EX	676472	6807014	495	40	M57/180	EASTMET
PWAC0079	331.7	AC	EX	676489.4	6807023	495	40	M57/180	EASTMET
PWAC0080	331.7	AC	EX	676506.8	6807033	495	40	M57/180	EASTMET
PWAC0082	331.7	RAB	EX	676258.5	6806985	495	40	M57/180	EASTMET
PWAC0083	331.7	RAB	EX	676293.3	6807005	495	40	M57/180	EASTMET
PWAC0084	331.7	RAB	EX	676328.2	6807024	495	40	M57/180	EASTMET
PWAC0085	331.7	RAB	EX	676363	6807044	495	40	M57/180	EASTMET
PWAC0086	331.7	RAB	EX	676397.9	6807064	495	40	M57/180	EASTMET
PWAC0087	331.7	RAB	EX	676432.7	6807083	495	40	M57/180	EASTMET
PWAC0090	331.7	RAB	EX	676254	6807074	495	40	M57/180	EASTMET
PWAC0091	331.7	RAB	EX	676288.9	6807094	495	40	M57/180	EASTMET

Page | 31

PWAC0092	331.7	RAB	EX	676323.7	6807114	495	40	M57/180	EASTMET
PWAC0093	331.7	RAB	EX	676358.6	6807133	495	40	M57/180	EASTMET
PWAC0094	331.7	RAB	EX	676393.4	6807153	495	40	M57/180	EASTMET
PWAC0099	331.7	RAB	EX	676284.4	6807183	495	40	M57/180	EASTMET
PWAC0100	331.7	RAB	EX	676319.3	6807203	495	40	M57/180	EASTMET
PWAC0101	331.7	RAB	EX	676354.1	6807223	495	40	M57/180	EASTMET
PWAC0102	331.7	RAB	EX	676389	6807242	495	40	M57/180	EASTMET
PWAC0103	331.7	RAB	EX	676423.8	6807262	495	40	M57/180	EASTMET
PWAC0104	331.7	RAB	EX	676458.7	6807282	495	40	M57/180	EASTMET
PWAC0105	331.7	RAB	EX	676493.5	6807301	495	40	M57/180	EASTMET
PWAC0111	331.7	RAB	EX	676260.4	6807308	492	40	M57/180	EASTMET
PWAC0112	331.7	RAB	EX	676295.2	6807327	492	40	M57/180	EASTMET
PWAC0113	331.7	RAB	EX	676330.1	6807347	492	40	M57/180	EASTMET
PWAC0114	331.7	RAB	EX	676364.9	6807367	492	40	M57/180	EASTMET
PWAC0115	331.7	RAB	EX	676399.8	6807386	492	40	M57/180	EASTMET
PWAC0116	331.7	RAB	EX	676434.6	6807406	492	40	M57/180	EASTMET
PWB0001	331.7	RC	EX	676564.2	6806899	495.13	79	M57/180	EASTMET
PWD0001	331.7	DIA	EX	676532.3	6806887	495.47	90.5	M57/180	EASTMET
PWD0002	331.7	DIA	EX	676619.1	6806936	493.69	100	M57/180	EASTMET
PWD0003	331.7	DIA	EX	676702.9	6806921	491.92	172.3	M57/180	EASTMET
PWD0004	331.7	DIA	EX	676700.3	6806800	493.12	180.5	M57/180	EASTMET
PWD0005	331.7	DIA	EX	676690.6	6806751	492.71	150	M57/196	EASTMET
PWD0005W1	331.7	DIA	EX	676690.6	6806751	492.71	150	M57/196	EASTMET
PWD0005W2	331.7	DIA	EX	676690.6	6806751	492.71	150	M57/196	EASTMET
PWD0006	331.7	DIA	EX	676670.5	6806712	491.71	130	M57/196	EASTMET
PWD0007	331.7	DIA	EX	676708.8	6806905	492.02	180	M57/180	EASTMET
PWD0008	331.7	DIA	EX	676707.3	6806838	492.56	175.7	M57/180	EASTMET
PWD0009	331.7	DIA	EX	676707.5	6806836	492.6	192	M57/180	EASTMET
PWD0009W1	331.7	DIA	EX	676707.5	6806836	492.6	176	M57/180	GMA
PWD0009W2	331.7	DIA	EX	676707.5	6806836	492.6	176	M57/180	GMA
PWD0010	331.7	DIA	EX	676703.9	6806819	492.71	169.9	M57/180	EASTMET
PWD0011	331.7	DIA	EX	676755.6	6807046	491.56	270	M57/180	EASTMET

Page | 32

PWD0012	331.7	DIA	EX	676710.8	6806709	492.76	170	M57/196	EASTMET
PWD0013	331.7	DIA	EX	676753.4	6806721	491.78	225	M57/196	EASTMET
PWD0014	331.7	DIA	EX	676743.3	6806801	492.08	259.5	M57/180	EASTMET
PWD0015	331.7	DIA	EX	676740.4	6806881	491.78	235	M57/180	EASTMET
PWL0001	331.7	RC	EX	676488.4	6807046	496	10	M57/180	EASTMET
PWL0002	331.7	RC	EX	676497.1	6807051	496	10	M57/180	EASTMET
PWL0003	331.7	RC	EX	676505.8	6807056	496	10	M57/180	EASTMET
PWL0004	331.7	RC	EX	676485	6807113	496	10	M57/180	EASTMET
PWL0017	331.7	RC	EX	676507.2	6807013	496.1	10	M57/180	EASTMET
PWL0025	331.7	RC	EX	676501	6806983	495.51	10	M57/180	EASTMET
PWL0026	331.7	RC	EX	676511.6	6806986	495.53	20	M57/180	EASTMET
PWL0027	331.7	RC	EX	676527.2	6806998	495.65	20	M57/180	EASTMET
PWL0028	331.7	RC	EX	676580.6	6807029	494.46	10	M57/180	EASTMET
PWL0038	331.7	RC	EX	676596.8	6807017	494.21	10	M57/180	EASTMET
PWL0039	331.7	RC	EX	676513.8	6806957	495.94	10	M57/180	EASTMET
PWL0040	331.7	RC	EX	676530.4	6806967	495.42	20	M57/180	EASTMET
PWL0041	331.7	RC	EX	676546.6	6806981	494.99	10	M57/180	EASTMET
PWL0042	331.7	RC	EX	676583.6	6806998	494.4	10	M57/180	EASTMET
PWL0043	331.7	RC	EX	676592.8	6807003	494.2	10	M57/180	EASTMET
PWL0044	331.7	RC	EX	676610.2	6807012	493.9	10	M57/180	EASTMET
PWL0045	331.7	RC	EX	676601.2	6807007	494	10	M57/180	EASTMET
PWL0046	331.7	RC	EX	676521.7	6806948	495.74	10	M57/180	EASTMET
PWL0047	331.7	RC	EX	676538.5	6806957	495.1	20	M57/180	EASTMET
PWL0048	331.7	RC	EX	676590.8	6806988	493.95	10	M57/180	EASTMET
PWL0056	331.7	RC	EX	676608.6	6806976	493.63	10	M57/180	EASTMET
PWL0057	331.7	RC	EX	676626.6	6806985	493.42	10	M57/180	EASTMET
PWRC0001	331.7	RC	EX	676585.6	6806752	494.01	40	M57/196	EASTMET
PWRC0002	331.7	RC	EX	676603.3	6806762	493.78	60	M57/196	EASTMET
PWRC0003	331.7	RC	EX	676620.7	6806773	493.54	85	M57/196	EASTMET
PWRC0004	331.7	RC	EX	676581.9	6806778	494.39	35	M57/196	EASTMET
PWRC0005	331.7	RC	EX	676592.4	6806781	494.24	50	M57/196	EASTMET
PWRC0006	331.7	RC	EX	676608.7	6806793	494.03	75	M57/196	EASTMET

PWRC0007	331.7	RC	EX	676619.4	6806793	494.09	90	M57/196	EASTMET
PWRC0008	331.7	RC	EX	676582.3	6806798	494.76	45	M57/196	EASTMET
PWRC0009	331.7	RC	EX	676599.5	6806809	494.56	65	M57/180	EASTMET
PWRC0010	331.7	RC	EX	676616.7	6806819	494.23	85	M57/180	EASTMET
PWRC0011	331.7	RC	EX	676571.6	6806817	494.98	35	M57/180	EASTMET
PWRC0012	331.7	RC	EX	676579.7	6806821	494.83	45	M57/180	EASTMET
PWRC0013	331.7	RC	EX	676594.4	6806832	494.46	65	M57/180	EASTMET
PWRC0014	331.7	RC	EX	676614.2	6806841	494.19	85	M57/180	EASTMET
PWRC0015	331.7	RC	EX	676569.2	6806838	494.72	35	M57/180	EASTMET
PWRC0016	331.7	RC	EX	676586.7	6806849	494.4	70	M57/180	EASTMET
PWRC0017	331.7	RC	EX	676603.5	6806858	494.1	90	M57/180	EASTMET
PWRC0018	331.7	RC	EX	676621.2	6806868	493.73	100	M57/180	EASTMET
PWRC0019	331.7	RC	EX	676560.5	6806857	494.71	25	M57/180	EASTMET
PWRC0020	331.7	RC	EX	676569.8	6806862	494.75	30	M57/180	EASTMET
PWRC0021	331.7	RC	EX	676586.9	6806872	494.35	80	M57/180	EASTMET
PWRC0022	331.7	RC	EX	676597.8	6806872	493.88	100	M57/180	EASTMET
PWRC0023	331.7	RC	EX	676604.6	6806882	493.97	100	M57/180	EASTMET
PWRC0024	331.7	RC	EX	676630.2	6806896	493.61	110	M57/180	EASTMET
PWRC0025	331.7	RC	EX	676559.9	6806878	494.84	30	M57/180	EASTMET
PWRC0026	331.7	RC	EX	676576.7	6806888	494.42	60	M57/180	EASTMET
PWRC0027	331.7	RC	EX	676594	6806897	494.07	80	M57/180	EASTMET
PWRC0028	331.7	RC	EX	676611	6806908	493.63	100	M57/180	EASTMET
PWRC0029	331.7	RC	EX	676549.7	6806896	494.81	20	M57/180	EASTMET
PWRC0030	331.7	RC	EX	676556.5	6806905	494.03	30	M57/180	EASTMET
PWRC0031	331.7	RC	EX	676575.9	6806911	494.46	40	M57/180	EASTMET
PWRC0032	331.7	RC	EX	676593.1	6806921	494.14	65	M57/180	EASTMET
PWRC0033	331.7	RC	EX	676635.9	6806947	493.33	110	M57/180	EASTMET
PWRC0034	331.7	RC	EX	676536.6	6806913	495.43	20	M57/180	EASTMET
PWRC0035	331.7	RC	EX	676554	6806923	495.15	40	M57/180	EASTMET
PWRC0036	331.7	RC	EX	676570.8	6806932	494.7	55	M57/180	EASTMET
PWRC0037	331.7	RC	EX	676588.7	6806942	494.27	70	M57/180	EASTMET
PWRC0038	331.7	RC	EX	676605.6	6806951	493.89	90	M57/180	EASTMET

PWRC0039	331.7	RC	EX	676623.8	6806961	493.63	100	M57/180	EASTMET
PWRC0040	331.7	RC	EX	676538.8	6806937	495.25	15	M57/180	EASTMET
PWRC0041	331.7	RC	EX	676547.5	6806942	495.34	25	M57/180	EASTMET
PWRC0042	331.7	RC	EX	676555.7	6806946	494.99	35	M57/180	EASTMET
PWRC0043	331.7	RC	EX	676573.8	6806956	494.5	50	M57/180	EASTMET
PWRC0044	331.7	RC	EX	676591.1	6806966	494.23	70	M57/180	EASTMET
PWRC0045	331.7	RC	EX	676616.9	6806981	494.07	85	M57/180	EASTMET
PWRC0046	331.7	RC	EX	676634.4	6806990	493.21	100	M57/180	EASTMET
PWRC0047	331.7	RC	EX	676530.3	6806953	495.47	20	M57/180	EASTMET
PWRC0048	331.7	RC	EX	676548	6806963	495.14	35	M57/180	EASTMET
PWRC0049	331.7	RC	EX	676565	6806972	494.56	50	M57/180	EASTMET
PWRC0050	331.7	RC	EX	676582.1	6806983	494.35	65	M57/180	EASTMET
PWRC0051	331.7	RC	EX	676599	6806993	494.19	75	M57/180	EASTMET
PWRC0052	331.7	RC	EX	676616.2	6807002	493.76	85	M57/180	EASTMET
PWRC0053	331.7	RC	EX	676517.8	6806972	495.87	20	M57/180	EASTMET
PWRC0054	331.7	RC	EX	676527.1	6806978	495.55	35	M57/180	EASTMET
PWRC0055	331.7	RC	EX	676535.3	6806982	495.38	45	M57/180	EASTMET
PWRC0056	331.7	RC	EX	676561.7	6806997	494.92	55	M57/180	EASTMET
PWRC0057	331.7	RC	EX	676578.8	6807007	494.47	65	M57/180	EASTMET
PWRC0058	331.7	RC	EX	676605.1	6807022	494.06	80	M57/180	EASTMET
PWRC0059	331.7	RC	EX	676518.9	6806994	495.67	20	M57/180	EASTMET
PWRC0060	331.7	RC	EX	676535.2	6807003	495.3	30	M57/180	EASTMET
PWRC0061	331.7	RC	EX	676552.7	6807013	494.9	40	M57/180	EASTMET
PWRC0062	331.7	RC	EX	676570.4	6807023	494.64	50	M57/180	EASTMET
PWRC0063	331.7	RC	EX	676587.3	6807033	494.51	60	M57/180	EASTMET
PWRC0064	331.7	RC	EX	676525	6807022	495.85	20	M57/180	EASTMET
PWRC0065	331.7	RC	EX	676533.7	6807027	495.53	30	M57/180	EASTMET
PWRC0066	331.7	RC	EX	676550.8	6807036	495.32	35	M57/180	EASTMET
PWRC0067	331.7	RC	EX	676568.8	6807046	494.85	45	M57/180	EASTMET
PWRC0068	331.7	RC	EX	676515	6807040	495.58	20	M57/180	EASTMET
PWRC0069	331.7	RC	EX	676532.2	6807050	495.74	35	M57/180	EASTMET
PWRC0070	331.7	RC	EX	676549.4	6807059	495.14	50	M57/180	EASTMET

Page | 35

PWRC0071	331.7	RC	EX	676603.1	6806726	493.48	70	M57/196	EASTMET
PWRC0072	331.7	RC	EX	676585.7	6806715	493.82	40	M57/196	EASTMET
PWRC0073	331.7	RC	EX	676568.4	6806706	493.64	25	M57/196	EASTMET
PWRC0074	331.7	RC	EX	676608.9	6806747	493.68	70	M57/196	EASTMET
PWRC0075	331.7	RC	EX	676589.6	6806736	493.96	60	M57/196	EASTMET
PWRC0076	331.7	RC	EX	676574.3	6806727	494.12	30	M57/196	EASTMET
PWRC0077	331.7	RC	EX	676555.9	6806967	494.84	40	M57/180	EASTMET
PWRC0078	331.7	RC	EX	676608.4	6806996	493.83	85	M57/180	EASTMET
PWRC0079	331.7	RC	EX	676544.8	6806987	494.98	40	M57/180	EASTMET
PWRC0080	331.7	RC	EX	676561.9	6807018	494.83	60	M57/180	EASTMET
PWRC0081	331.7	RC	EX	676522.9	6807045	495.43	20	M57/180	EASTMET
PWRC0082	331.7	RC	EX	676540.2	6807054	495.09	35	M57/180	EASTMET
PWRC0083	331.7	RC	EX	676590.6	6806803	494.59	50	M57/180	EASTMET
PWRC0084	331.7	RC	EX	676630.4	6806920	493.46	105	M57/180	EASTMET
PWRC0085	331.7	RC	EX	676656.2	6806910	493.1	128	M57/180	EASTMET
PWRC0086	331.7	RC	EX	676650.1	6806886	493.22	128	M57/180	EASTMET
PWRC0087	331.7	RC	EX	676645	6806859	493.59	108	M57/180	EASTMET
PWRC0088	331.7	RC	EX	676576.8	6806776	494.43	15	M57/196	EASTMET
PWRC0089	331.7	RC	EX	676572.9	6806794	494.48	15	M57/196	EASTMET
PWRC0090	331.7	RC	EX	676577	6806796	494.54	20	M57/196	EASTMET
PWRC0091	331.7	RC	EX	676566.5	6806815	494.9	10	M57/180	EASTMET
PWRC0092	331.7	RC	EX	676561.6	6806834	494.93	10	M57/180	EASTMET
PWRC0093	331.7	RC	EX	676565	6806836	494.77	15	M57/180	EASTMET
PWRC0094	331.7	RC	EX	676556.8	6806856	494.88	10	M57/180	EASTMET
PWRC0095	331.7	RC	EX	676556.2	6806875	494.7	10	M57/180	EASTMET
PWRC0096	331.7	RC	EX	676546.4	6806894	494.84	12	M57/180	EASTMET
PWRC0097	331.7	RC	EX	676544.8	6806917	494.94	15	M57/180	EASTMET
PWRC0098	331.7	RC	EX	676549	6806919	494.91	15	M57/180	EASTMET
PWRC0099	331.7	RC	EX	676534.7	6806935	495.33	10	M57/180	EASTMET
PWRC0100	331.7	RC	EX	676543	6806939	495	15	M57/180	EASTMET
PWRC0101	331.7	RC	EX	676529.9	6806979	495.18	15	M57/180	EASTMET
PWRC0102	331.7	RC	EX	676608.8	6806966	452.42	90	M57/180	EASTMET

PWRC0103	331.7	RC	EX	676620	6806906	452.38	80	M57/180	EASTMET
PYWRC001	331.7	RC	EX	676695.7	6806991	492	195	M57/180	AQUILA
PYWRC002	331.7	RC	EX	676690.7	6806971	492	200	M57/180	AQUILA
YGC0001	331.7	RC	EX	676522.8	6807065	495.35	59	M57/180	EASTMET
YGC0002	331.7	RC	EX	676540.1	6807075	495.52	97	M57/180	EASTMET
YGC0003	331.7	RC	EX	676557.2	6807085	494.56	80	M57/180	EASTMET
YGC0004	331.7	RC	EX	676539.7	6807034	495.4	19	M57/180	EASTMET
YGC0004A	331.7	RC	EX	676540.3	6807035	495.4	60	M57/180	EASTMET
YGC0005	331.7	RC	EX	676556.9	6807044	495.11	80	M57/180	EASTMET
YGC0006	331.7	RC	EX	676575.1	6807054	494.92	80	M57/180	EASTMET
YGC0007	331.7	RC	EX	676552.8	6806992	495	60	M57/180	EASTMET
YGC0008	331.7	RC	EX	676570.2	6807002	494.74	80	M57/180	EASTMET
YGC0009	331.7	RC	EX	676587.5	6807012	494.2	79	M57/180	EASTMET
YGC0010	331.7	RC	EX	676564.1	6806952	494.88	60	M57/180	EASTMET
YGC0011	331.7	RC	EX	676581.1	6806962	494.36	80	M57/180	EASTMET
YGC0012	331.7	RC	EX	676598.8	6806972	494.05	80	M57/180	EASTMET
YGC0013	331.7	RC	EX	676565.2	6806909	494.79	60	M57/180	EASTMET
YGC0014	331.7	RC	EX	676584.3	6806916	494.34	80	M57/180	EASTMET
YGC0015	331.7	RC	EX	676601.5	6806926	493.95	80	M57/180	EASTMET
YGC0016	331.7	RC	EX	676577.8	6806867	494.5	60	M57/180	EASTMET
YGC0017	331.7	RC	EX	676595.3	6806876	494.12	80	M57/180	EASTMET
YGC0018	331.7	RC	EX	676612.3	6806886	493.82	84	M57/180	EASTMET
YGC0019	331.7	RC	EX	676587.1	6806827	494.56	60	M57/180	EASTMET
YGC0020	331.7	RC	EX	676604.4	6806837	494.24	80	M57/180	EASTMET
YGC0021	331.7	RC	EX	676623.9	6806845	494.1	99	M57/180	EASTMET
YGC0022	331.7	RC	EX	676601	6806785	494.2	60	M57/196	EASTMET
YGC0023	331.7	RC	EX	676616.9	6806797	494.11	60	M57/196	EASTMET
YGC0024	331.7	RC	EX	676634.8	6806807	493.94	84	M57/180	EASTMET
YGC0025	331.7	RC	EX	676643.6	6806688	493.29	64	M57/196	EASTMET
YGC0030	331.7	RC	EX	676806.7	6806950	494	70	M57/180	EASTMET
YGC0031	331.7	RC	EX	676823.7	6806959	494	60	M57/180	EASTMET
YGR0155	331.7	RAB	EX	676670.9	6806648	493	44	M57/196	EASTMET

(ASX: SPX)

YGR0156	331.7	RAB	EX	676688.5	6806658	493	42	M57/196	EASTMET
YGR0157	331.7	RAB	EX	676706.1	6806667	493	33	M57/196	EASTMET
YGR0158	331.7	RAB	EX	676723.7	6806677	493	33	M57/196	EASTMET
YGR0159	331.7	RAB	EX	676605.9	6806727	493.56	44	M57/196	EASTMET
YGR0160	331.7	RAB	EX	676623.5	6806736	493.53	39	M57/196	EASTMET
YGR0161	331.7	RAB	EX	676641.1	6806746	493.52	44	M57/196	EASTMET
YGR0162	331.7	RAB	EX	676658.7	6806755	493	42	M57/196	EASTMET
YGR0163	331.7	RAB	EX	676576.1	6806824	494.66	41	M57/180	EASTMET
YGR0164	331.7	RAB	EX	676593.7	6806834	494.31	32	M57/180	EASTMET
YGR0165	331.7	RAB	EX	676611.3	6806843	494.12	35	M57/180	EASTMET
YGR0166	331.7	RAB	EX	676629	6806853	493.75	35	M57/180	EASTMET
YGR0167	331.7	RAB	EX	676646.6	6806862	493.51	32	M57/180	EASTMET
YGR0168	331.7	RAB	EX	676546.3	6806922	495.06	31	M57/180	EASTMET
YGR0169	331.7	RAB	EX	676563.9	6806931	494.81	39	M57/180	EASTMET
YGR0170	331.7	RAB	EX	676581.6	6806941	494.34	36	M57/180	EASTMET
YGR0171	331.7	RAB	EX	676599.2	6806950	493.91	28	M57/180	EASTMET
YGR0172	331.7	RAB	EX	676616.8	6806960	493.67	42	M57/180	EASTMET
YGR0173	331.7	RAB	EX	676481.3	6807001	495	30	M57/180	EASTMET
YGR0174	331.7	RAB	EX	676498.9	6807010	495	35	M57/180	EASTMET
YGR0175	331.7	RAB	EX	676516.6	6807019	495.81	36	M57/180	EASTMET
YGR0176	331.7	RAB	EX	676534.2	6807029	495.4	33	M57/180	EASTMET
YGR0177	331.7	RAB	EX	676551.8	6807038	495.17	39	M57/180	EASTMET
YGR0178	331.7	RAB	EX	676569.4	6807048	494.86	41	M57/180	EASTMET
YGR0179	331.7	RAB	EX	676817.3	6806840	493	27	M57/180	EASTMET
YGR0180	331.7	RAB	EX	676834.9	6806850	493	21	M57/180	EASTMET
YGR0181	331.7	RAB	EX	676852.6	6806859	493	20	M57/180	EASTMET
YGR0182	331.7	RAB	EX	676805.2	6806948	493	18	M57/180	EASTMET
YGR0183	331.7	RAB	EX	676822.8	6806957	493	20	M57/180	EASTMET
YGR0184	331.7	RAB	EX	676840.4	6806966	493	27	M57/180	EASTMET
YGR0185	331.7	RAB	EX	676653.3	6806639	493	43	M57/196	EASTMET
YGR0185A	331.7	RAB	EX	676481.3	6807001	495	50	M57/180	EASTMET
YGR0186A	331.7	RAB	EX	676498.9	6807010	495	50	M57/180	EASTMET

YGR0187A	331.7	RAB	EX	676516.5	6807019	495.91	50	M57/180	EASTMET
YGR0188A	331.7	RAB	EX	676534.2	6807029	495.4	50	M57/180	EASTMET
YGR0189A	331.7	RAB	EX	676551.8	6807038	495.17	50	M57/180	EASTMET
YGR0190A	331.7	RAB	EX	676569.4	6807048	494.95	50	M57/180	EASTMET
YGR0191A	331.7	RAB	EX	676587	6807057	495	48	M57/180	EASTMET
YGR0192	331.7	RAB	EX	676511.1	6806903	495	45	M57/180	EASTMET
YGR0193	331.7	RAB	EX	676528.7	6806912	495.53	50	M57/180	EASTMET
YGR0194	331.7	RAB	EX	676546.3	6806922	495.06	50	M57/180	EASTMET
YGR0195	331.7	RAB	EX	676563.9	6806931	494.81	50	M57/180	EASTMET
YGR0196	331.7	RAB	EX	676581.6	6806941	494.34	42	M57/180	EASTMET
YGR0197	331.7	RAB	EX	676599.2	6806950	493.91	50	M57/180	EASTMET
YGR0198	331.7	RAB	EX	676540.9	6806805	494.62	50	M57/180	EASTMET
YGR0199	331.7	RAB	EX	676558.5	6806815	494.77	50	M57/180	EASTMET
YGR0200	331.7	RAB	EX	676576.1	6806824	494.66	50	M57/180	EASTMET
YGR0201	331.7	RAB	EX	676593.7	6806834	494.31	45	M57/180	EASTMET
YGR0202	331.7	RAB	EX	676611.3	6806843	494.12	50	M57/180	EASTMET
YGR0203	331.7	RAB	EX	676629	6806853	493.75	50	M57/180	EASTMET
YGR0204	331.7	RAB	EX	676570.6	6806708	493.88	50	M57/196	EASTMET
YGR0205	331.7	RAB	EX	676588.2	6806717	493.65	50	M57/196	EASTMET
YGR0206	331.7	RAB	EX	676605.9	6806727	493.56	50	M57/196	EASTMET
YGR0207	331.7	RAB	EX	676623.5	6806736	493.53	50	M57/196	EASTMET
YGR0208	331.7	RAB	EX	676641.1	6806746	493.52	50	M57/196	EASTMET
YGR0209	331.7	RAB	EX	676658.7	6806755	493	48	M57/196	EASTMET
YGR0210	331.7	RAB	EX	676653.3	6806639	493	50	M57/196	EASTMET
YGR0211	331.7	RAB	EX	676670.9	6806648	493	50	M57/196	EASTMET
YGR0212	331.7	RAB	EX	676688.5	6806658	493	50	M57/196	EASTMET
YGR0213	331.7	RAB	EX	676706.1	6806667	493	50	M57/196	EASTMET
YGR0214	331.7	RAB	EX	676723.7	6806677	493	50	M57/196	EASTMET
YGR0300	331.7	RAB	EX	676574.9	6807164	495	50	M57/180	EASTMET
YGR0301	331.7	RAB	EX	676557.3	6807155	495	47	M57/180	EASTMET
YGR0302	331.7	RAB	EX	676539.6	6807145	495	46	M57/180	EASTMET
YGR0303	331.7	RAB	EX	676522	6807136	495	50	M57/180	EASTMET

(ASX: SPX)

ASX ANNOUNCEMENT

16 October 2018

YGR0304	331.7	RAB	EX	676504.4	6807127	495	46	M57/180	EASTMET
YGR0305	331.7	RAB	EX	676492.9	6807064	495	50	M57/180	EASTMET
YGR0306	331.7	RAB	EX	676510.5	6807073	495	50	M57/180	EASTMET
YGR0307	331.7	RAB	EX	676528.1	6807082	495	50	M57/180	EASTMET
YGR0308	331.7	RAB	EX	676545.7	6807092	495	50	M57/180	EASTMET
YGR0309	331.7	RAB	EX	676563.3	6807101	495	44	M57/180	EASTMET
YGR0310	331.7	RAB	EX	676505	6806956	495.48	50	M57/180	EASTMET
YGR0311	331.7	RAB	EX	676522.6	6806966	495.52	50	M57/180	EASTMET
YGR0312	331.7	RAB	EX	676540.2	6806975	495.19	50	M57/180	EASTMET
YGR0313	331.7	RAB	EX	676557.9	6806985	494.85	50	M57/180	EASTMET
YGR0314	331.7	RAB	EX	676575.5	6806994	494.46	50	M57/180	EASTMET
YGR0314A	331.7	RAB	EX	676517.2	6806849	495	46	M57/180	EASTMET
YGR0315	331.7	RAB	EX	676534.8	6806859	495.1	37	M57/180	EASTMET
YGR0316	331.7	RAB	EX	676552.4	6806868	494.85	50	M57/180	EASTMET
YGR0317	331.7	RAB	EX	676570	6806878	494.63	50	M57/180	EASTMET
YGR0318	331.7	RAB	EX	676587.6	6806887	494.25	50	M57/180	EASTMET
YGR0319	331.7	RAB	EX	676605.3	6806897	493.81	50	M57/180	EASTMET
YGR0320	331.7	RAB	EX	676546.9	6806752	494	48	M57/196	EASTMET
YGR0321	331.7	RAB	EX	676564.5	6806761	494.21	45	M57/196	EASTMET
YGR0322	331.7	RAB	EX	676582.2	6806771	494.29	50	M57/196	EASTMET
YGR0323	331.7	RAB	EX	676599.8	6806780	494.11	48	M57/196	EASTMET
YGR0324	331.7	RAB	EX	676617.4	6806790	494.02	50	M57/196	EASTMET
YGR0325	331.7	RAB	EX	676576.7	6806654	493	50	M57/196	EASTMET
YGR0326	331.7	RAB	EX	676594.3	6806664	493	50	M57/196	EASTMET
YGR0327	331.7	RAB	EX	676611.9	6806673	493	50	M57/196	EASTMET
YGR0328	331.7	RAB	EX	676629.6	6806683	493	50	M57/196	EASTMET
YGR0329	331.7	RAB	EX	676647.2	6806692	493	50	M57/196	EASTMET
YGR0330	331.7	RAB	EX	676582.8	6806601	493	45	M57/196	EASTMET
YGR0331	331.7	RAB	EX	676600.4	6806610	493	50	M57/196	EASTMET
YGR0332	331.7	RAB	EX	676618	6806620	493	49	M57/196	EASTMET
YGR0333	331.7	RAB	EX	676635.6	6806629	493	50	M57/196	EASTMET
YGR0334	331.7	RAB	EX	676606.5	6806557	493	38	M57/196	EASTMET

YGR0335	331.7	RAB	EX	676624.1	6806566	493	22	M57/180	EASTMET
YGR0336	331.7	RAB	EX	676641.7	6806576	493	42	M57/180	EASTMET
YGR0337	331.7	RAB	EX	676659.3	6806585	493	50	M57/180	EASTMET
YGR0338	331.7	RAB	EX	676676.9	6806595	493	40	M57/180	EASTMET
YGR0339	331.7	RAB	EX	676694.6	6806604	493	50	M57/180	EASTMET
YGR0339A	331.7	RAB	EX	676752.3	6806919	493	40	M57/180	EASTMET
YGR0340	331.7	RAB	EX	676712.2	6806614	493	50	M57/180	EASTMET
YGR0340A	331.7	RAB	EX	676769.9	6806929	493	40	M57/180	EASTMET
YGR0341	331.7	RAB	EX	676787.5	6806938	493	36	M57/180	EASTMET
YGR0342	331.7	RAB	EX	676840.4	6806966	493	31	M57/180	EASTMET
YGR0343	331.7	RAB	EX	676858	6806976	493	37	M57/180	EASTMET
YGR0344	331.7	RAB	EX	676875.6	6806985	493	39	M57/180	EASTMET
YGR0345	331.7	RAB	EX	676893.3	6806995	493	40	M57/180	EASTMET
YGR0346	331.7	RAB	EX	676910.9	6807004	493	31	M57/180	EASTMET
YGR0347	331.7	RAB	EX	676758.4	6806866	493	45	M57/180	EASTMET
YGR0348	331.7	RAB	EX	676776	6806875	493	38	M57/180	EASTMET
YGR0349	331.7	RAB	EX	676793.6	6806885	493	33	M57/180	EASTMET
YGR0350	331.7	RAB	EX	676811.2	6806894	493	28	M57/180	EASTMET
YGR0351	331.7	RAB	EX	676828.9	6806903	493	28	M57/180	EASTMET
YGR0352	331.7	RAB	EX	676846.5	6806913	493	28	M57/180	EASTMET
YGR0353	331.7	RAB	EX	676864.1	6806922	493	30	M57/180	EASTMET
YGR0354	331.7	RAB	EX	676881.7	6806932	493	24	M57/180	EASTMET
YGR0355	331.7	RAB	EX	676899.3	6806941	493	31	M57/180	EASTMET
YGR0356	331.7	RAB	EX	676917	6806951	493	40	M57/180	EASTMET
YGR0357	331.7	RAB	EX	676934.6	6806960	493	40	M57/180	EASTMET
YGR0358	331.7	RAB	EX	676764.4	6806812	493	40	M57/180	EASTMET
YGR0359	331.7	RAB	EX	676782.1	6806822	493	40	M57/180	EASTMET
YGR0360	331.7	RAB	EX	676799.7	6806831	493	40	M57/180	EASTMET
YGR0361	331.7	RAB	EX	676817.3	6806840	493	31	M57/180	EASTMET
YGR0362	331.7	RAB	EX	676834.9	6806850	493	30	M57/180	EASTMET
YGR0363	331.7	RAB	EX	676852.6	6806859	493	28	M57/180	EASTMET
YGR0364	331.7	RAB	EX	676870.2	6806869	493	9	M57/180	EASTMET

YGR0365	331.7	RAB	EX	676887.8	6806878	493	30	M57/180	EASTMET
YGR0366	331.7	RAB	EX	676905.4	6806888	493	26	M57/180	EASTMET
YGR0367	331.7	RAB	EX	676923	6806897	493	26	M57/180	EASTMET
YGR0368	331.7	RAB	EX	676940.7	6806907	493	30	M57/180	EASTMET
YGR0369	331.7	RAB	EX	676958.3	6806916	493	37	M57/180	EASTMET
YGR0370	331.7	RAB	EX	676872.9	6806927	493	30	M57/180	EASTMET
YGR0371	331.7	RAB	EX	676861.4	6806864	493	22	M57/180	EASTMET
YGR0372	331.7	RAB	EX	676896.6	6806883	493	15	M57/180	EASTMET
YGR0373	331.7	RAB	EX	676746.8	6806803	493	41	M57/180	EASTMET
YGR0429	331.7	RAB	EX	676418	6807171	495	36	M57/180	EASTMET
YGR0430	331.7	RAB	EX	676440.1	6807183	495	25	M57/180	EASTMET
YGR0431	331.7	RAB	EX	676462.1	6807195	495	43	M57/180	EASTMET
YGR0432	331.7	RAB	EX	676484.1	6807206	495	38	M57/180	EASTMET
YGR0433	331.7	RAB	EX	676506.1	6807218	495	39	M57/180	EASTMET
YGR0434	331.7	RAB	EX	676411	6807258	495	26	M57/180	EASTMET
YGR0435	331.7	RAB	EX	676446.2	6807277	495	47	M57/180	EASTMET
YGR0436	331.7	RAB	EX	676481.4	6807296	495	50	M57/180	EASTMET
YGR0437	331.7	RAB	EX	676389.3	6807383	492	50	M57/180	EASTMET
YGR0438	331.7	RAB	EX	676424.6	6807402	492	19	M57/180	EASTMET
YGR0439	331.7	RAB	EX	676464.2	6807423	492	49	M57/180	EASTMET
YGR0440	331.7	RAB	EX	676297.2	6807469	492	48	M57/180	EASTMET
YGR0441	331.7	RAB	EX	676319.2	6807481	492	50	M57/180	EASTMET
YGR0442	331.7	RAB	EX	676341.3	6807493	492	50	M57/180	EASTMET
YGR0464	331.7	RAB	EX	676494.7	6807212	495	41	M57/180	EASTMET
YGR0465	331.7	RAB	EX	676516.7	6807224	495	41	M57/180	EASTMET
YGR0467	331.7	RAB	EX	676486.2	6807435	492	40	M57/180	EASTMET
YGR0468	331.7	RAB	EX	676525.5	6807320	495	39	M57/180	EASTMET
YGR0469	331.7	RAB	EX	676528.2	6807230	495	43	M57/180	EASTMET
YGR0470	331.7	RAB	EX	676550.2	6807242	495	43	M57/180	EASTMET
YGR0481	331.7	RAB	EX	676508.3	6807447	492	41	M57/180	EASTMET
YGR0482	331.7	RAB	EX	676530.3	6807459	492	45	M57/180	EASTMET
YGR0483	331.7	RAB	EX	676552.3	6807470	492	40	M57/180	EASTMET

(ASX: SPX)

ASX ANNOUNCEMENT

16 October 2018

YGR0484	331.7	RAB	EX	676574.4	6807482	492	45	M57/180	EASTMET
YGR0485	331.7	RAB	EX	676596.4	6807494	492	41	M57/180	EASTMET
YGRB0040	331.7	RAB	EX	676580.7	6807257	495	51	M57/180	AQUILA
YGRB0041	331.7	RAB	EX	676605.7	6807260	495	47	M57/180	AQUILA
YGRB0042	331.7	RAB	EX	676659.7	6807301	495	52	M57/180	AQUILA
YGRB0043	331.7	RAB	EX	676715.7	6807325	495	50	M57/180	AQUILA
YGRB0044	331.7	RAB	EX	676770.7	6807362	492	29	M57/180	AQUILA
YGRB0045	331.7	RAB	EX	676823.7	6807381	492	24	M57/180	AQUILA
YGRB0046	331.7	RAB	EX	676840.7	6807389	492	39	M57/180	AQUILA
YGRB0047	331.7	RAB	EX	676883.7	6807402	492	38	M57/180	AQUILA
YGRB0048	331.7	RAB	EX	676935.7	6807427	492	40	M57/180	AQUILA
YGRB0049	331.7	RAB	EX	676988.7	6807455	492	50	M57/180	AQUILA
YGV0015	331.7	VAC	EX	676828.7	6806503	492	5	M57/196	EASTMET
YGV0016	331.7	VAC	EX	676872.2	6806528	492	5	M57/180	EASTMET
YGV0017	331.7	VAC	EX	676915.8	6806552	492	5	M57/180	EASTMET
YGV0018	331.7	VAC	EX	676959.3	6806577	492	4	M57/180	EASTMET
YGV0021	331.7	VAC	EX	676686.9	6806653	493	5	M57/196	EASTMET
YGV0022	331.7	VAC	EX	676708.7	6806665	493	6	M57/196	EASTMET
YGV0023	331.7	VAC	EX	676730.5	6806677	493	5	M57/196	EASTMET
YGV0024	331.7	VAC	EX	676752.2	6806690	493	6	M57/196	EASTMET
YGV0025	331.7	VAC	EX	676774	6806702	493	5	M57/196	EASTMET
YGV0026	331.7	VAC	EX	676577.6	6807050	494.71	6	M57/180	EASTMET
YGV0027	331.7	VAC	EX	676555.8	6807038	495.04	5	M57/180	EASTMET
YGV0028	331.7	VAC	EX	676534.1	6807026	495.4	4	M57/180	EASTMET
YGV0029	331.7	VAC	EX	676512.3	6807013	496.01	6	M57/180	EASTMET
YGV0030	331.7	VAC	EX	676490.5	6807001	495	4	M57/180	EASTMET
YGV0031	331.7	VAC	EX	676594.3	6806715	493.65	4	M57/196	EASTMET
YGV0032	331.7	VAC	EX	676616	6806728	493.55	8	M57/196	EASTMET
YGV0033	331.7	VAC	EX	676637.8	6806740	493.52	10	M57/196	EASTMET
YGV0034	331.7	VAC	EX	676659.6	6806752	493	5	M57/196	EASTMET
YGV0035	331.7	VAC	EX	676681.4	6806764	493	5	M57/196	EASTMET
PW1201M	331.7	RC	EX	676577	6807036	474	49		McVerde

PW1202M	331.7	RC	EX	676561	6807043	476	47		McVerde
PW1203M	331.7	RC	EX	676546	6807042	477	39		McVerde
PW1204M	331.7	RC	EX	676590	6807027	472	44		McVerde
PW1205M	331.7	RC	EX	676539	6807046	477	39		McVerde
17PPD001	185.8	DIA	EX	676634	6806791	451.1	78.4		Plateaux
17PPD002	185.8	DIA	EX	676634	6806791	451.1	69.81		Plateaux
17PPD003	185.8	DIA	EX	676634	6806791	451.1	81.6		Plateaux
17PPD004	185.8	DIA	EX	676634	6806791	451.1	81.1		Plateaux
17PPD005	185.8	DIA	EX	676634	6806791	451.1	96		Plateaux
17PPD006	185.8	DIA	EX	676634	6806791	451.1	109		Plateaux
17PPD007	185.8	DIA	EX	676634	6806791	451.1	160		Plateaux
17PPD008	185.8	DIA	EX	676634	6806791	451.1	96.8		Plateaux
17PPD009	185.8	DIA	EX	676651	6806925	460.3	137.7		Plateaux
16PPP001	191.3	DIA	EX_P	676737	6806892	493	200	M57/180	Plateaux
16PPP002	191.3	DIA	EX_P	676684	6806989	495	162	M57/180	Plateaux
16PPP003	191.3	DIA	EX_P	676708	6806835	498	186	M57/180	Plateaux
16PPP004	191.3	DIA	EX_P	676575	6807105	499	180	M57/180	Plateaux
16PPP005	191.3	DIA	EX_P	676702	6806950	496	168	M57/180	Plateaux
16PPP006	191.3	DIA	EX_P	676625	6807058	498	174	M57/180	Plateaux
16PPP007	191.3	DIA	EX_P	676652	6807030	498	180	M57/180	Plateaux
16PPP008	191.3	DIA	EX_P	676529	6807149	497	168	M57/180	Plateaux
16PPP009	191.3	DIA	EX_P	676694	6806765	496	146	M57/196	Plateaux
16PPP010	191.3	DIA	EX_P	676689	6806752	497	140	M57/196	Plateaux
16PPP011	191.3	DIA	EX_P	676710	6806883	498	180	M57/180	Plateaux
16PPP012	191.3	DIA	EX_P	676709	6806902	497	172	M57/180	Plateaux
16PPP013	191.3	DIA	EX_P	676703	6806924	496	180	M57/180	Plateaux
16PPP014	191.3	DIA	EX_P	676701	6806787	498	204	M57/196	Plateaux
16PPP015	191.3	DIA	EX_P	676583	6807090	497	152	M57/180	Plateaux

